Alteration of normal cellular profiles in the Scleractinian coral (Pocillopora damicornis) following laboratory exposure to fuel oil.
نویسندگان
چکیده
Petroleum contamination from oil spills is a continuing threat to our ocean's fragile ecosystems. Herein, we explored the effects of the water-soluble fraction of crude oil on a stony coral, Pocillopora damicornis (Linneaeus 1758). We developed methods for exposing corals to various concentrations of crude oil and for assessing the potential molecular responses of the corals. Corals were exposed to water-accommodated fraction solutions, and appropriate cellular biomarkers were quantified. When compared to the "healthy" control specimens, exposed corals exhibited shifts in biomarker concentrations that were indicative of a shift from homeostasis. Significant changes were seen in cytochrome P450 1-class, cytochrome P450 2-class, glutathione-S-transferase-pi, and cnidarian multixenobiotic resistance protein- biomarkers, which are involved the cellular response to, and manipulation and excretion of, toxic compounds, including polycyclic aromatic hydrocarbons. A shift in biomarkers necessary for porphyrin production (e.g., protoporphyrinogen oxidase IX and ferrochelatase) and porphyrin destruction (e.g., heme oxygenase-1 and invertebrate neuroglobin homologue) illustrates only one of the cellular protective mechanisms. The response to oxidative stress was evaluated through measurements of copper/zinc superoxide dismutase-1 and DNA glycosylase MutY homologue-1 concentrations. Likewise, changes in heat shock protein 70 and small heat shock proteins indicated an adjustment in the cellular production of proteins. Finally, the results of this laboratory study were nearly identical to what we observed previously among corals of a different species, Porites lobata, exposed to an oil spill in the field after the grounding of the Merchant Vessel Kyowa Violet.
منابع مشابه
Differential effects of copper on three species of scleractinian corals and their algal symbionts (Symbiodinium spp.).
Land-based sources of pollution have been identified as significant stressors linked to the widespread declines of coral cover in coastal reef ecosystems over the last 30 years. Metal contaminants, although noted as a concern, have not been closely monitored in these sensitive ecosystems, nor have their potential impacts on coral-algal symbioses been characterized. In this study, three species ...
متن کاملPhysiological responses of the scleractinian coral Pocillopora damicornis to bacterial stress from Vibrio coralliilyticus.
As the effects of climate change have become increasingly visible over the past three decades, coral reefs have suffered from a number of natural and anthropogenic disturbances that have caused a critical decline in coral populations. Among these disturbances are coral diseases, which have appeared with increasing frequency and severity, often in correlation with increases in water temperature....
متن کاملPocillopora aliciae: a new species of scleractinian coral (Scleractinia, Pocilloporidae) from subtropical Eastern Australia.
Lack of morphological features of diagnostic value and high levels of environmental phenotypic plasticity obscure species boundaries for most taxa in the genus Pocillopora Lamarck, 1816 and complicate the definition of taxonomically distinct units. Species of the genus are colonial, generally ramose, rarely massive or encrusting and mostly hermatypic; corallite arrangement is plocoid, septa are...
متن کاملLight Respiratory Processes and Gross Photosynthesis in Two Scleractinian Corals
The light dependency of respiratory activity of two scleractinian corals was examined using O2 microsensors and CO2 exchange measurements. Light respiration increased strongly but asymptotically with elevated irradiance in both species. Light respiration in Pocillopora damicornis was higher than in Pavona decussata under low irradiance, indicating species-specific differences in light-dependent...
متن کاملOcean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals
As climate change challenges organismal fitness by creating a phenotype-environment mismatch, phenotypic plasticity generated by epigenetic mechanisms (e.g., DNA methylation) can provide a temporal buffer for genetic adaptation. Epigenetic mechanisms may be crucial for sessile benthic marine organisms, such as reef-building corals, where ocean acidification (OA) and warming reflect in strong ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental toxicology and chemistry
دوره 25 12 شماره
صفحات -
تاریخ انتشار 2006